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Abstract
In discussing radiation from multiple point charges or magnetic dipoles, moving
in circles or ellipses, a variety of Kapteyn series of the second kind arises. Some
of the series have been known in closed form for a hundred years or more, others
appear not to be available to analytic persuasion. This paper shows how 12 such
generic series can be developed to produce either closed analytic expressions or
integrals that are not analytically tractable. In addition, the method presented
here may be of benefit when one has other Kapteyn series of the second kind to
consider, thereby providing an additional reason to consider such series anew.

PACS numbers: 41.50.−m, 94.05.Dd, 97s.60.Gb

1. Introduction

One problem in radiation that was considered of great interest at the beginning of the 20th
Century is the following. It is well known that a single point charge, moving uniformly in a
circle, radiates. Suppose then that one has N charges equally spaced around a circle and all
moving at the same circular speed. Then they too radiate. Now as the number N of charges is
increased, all other conditions being held fixed, then the spacing between charges decreases
proportional to 1/N . The limit of this process is a continuous uniform charge distribution
moving with constant circular motion, i.e., a steady-state ring current. But it is also well
known that such a current formation does not radiate. Then the question is: As N → ∞
how does the radiation diminish so that, finally, there is no radiation from a continuous ring
current?

Investigations of this basic problem immediately encountered Kapteyn series of the second
kind (see, e.g., [1, 2]) in a variety of forms and guises. (In general, Kapteyn series of the first
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kind are infinite sums of Bessel functions of the form

F(b) =
∞∑

n=1

fnJn(nb) (1)

and Kapteyn series of the second kind involve two Bessel functions.)
While the formula describing the radiation output was expressible as a set of terms

involving sums of Kapteyn series, at first only approximations to the series could be obtained
for arbitrary N [3]. The work of Budden [4] provided a systematic determination of the
Kapteyn series involved and evaluated the radiation field of the N like particles in terms of
factors summed to N/2 − 1. The advantage was that, along the way, Budden managed to
effect solutions in closed analytical form to some of the Kapteyn series involved. The upshot
was that, as N → ∞, one could show how the radiation field diminished to zero.

Since that time there has been, and continues to be, interest in a variety of such radiation
types of problems. Alternating positive and negative point charges spread uniformly around
a ring, each of which moves at a constant circular speed, are one such problem [5]. As the
number of charges increases without limit the spacing between successive charges tends to
zero so that, in the limit, there is a charge neutral ring that does not radiate. The approach of
the radiation field to zero as the number of charges tends to infinity is the problem of interest.
Fortunately, this problem is just a variant of the problem solved by Budden [4] because it
represents two rings of opposite charges with twice the spacing. Budden’s solution is then
immediately appropriate by superposition and charge reversal.

Radiation from a magnetic dipole, off-center from a pulsar that spins, is another such
problem [6, 7], as is the radiation field from a charged particle undergoing elliptical motion
[8].

In all such problems there, to date, 12 basic Kapteyn series of the second kind have arisen,
some of which have been known in closed form for a while others are often referred to as
‘solved’ but seem to be not readily available, if at all.

This paper provides the basic methodology to handle all 12 of the series and shows which
are expressible in closed analytic form and which are expressible only as integrals that cannot
be reduced to analytic form.

2. Manipulations with basic sets of Kapteyn series

2.1. The sets of series

The 12 series in question are given by

S1(λ,m, b) =
∞∑

n=1

λnn2mJ 2
n (nb) (2a)

S2(λ,m, b) =
∞∑

n=1

λnn2m+1J 2
n (nb) (2b)

S3(λ,m, b) =
∞∑

n=1

λnn2mJ ′
n

2
(nb) (2c)

S4(λ,m, b) =
∞∑

n=1

λnn2m+1J ′
n

2
(nb) (2d)

S5(λ,m, b) =
∞∑

n=1

λnn2mJn(nb)J ′
n(nb) (2e)
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S6(λ,m, b) =
∞∑

n=1

λnn2m+1Jn(nb)J ′
n(nb), (2f )

where λ ∈ {±1} and m ∈ Z.
The determination of the sets of series can be reduced to the simpler problem of

determining only the set of series with m = 0 (in the cases of S1, S3 and S6) and the set
of series with m = −1 (in the cases of S2, S4 and S5).

The reason for these reductions is as follows. One can write

2S6(λ,m, b) = ∂S1

∂b
(3a)

2S5(λ,m, b) = ∂S2

∂b
(3b)

so that it is sufficient to obtain S1, S2, S3 and S4.
Note also that

∂S3

∂b
= 2

∞∑
n=1

λnn2m+1J ′
n(nb)J ′′

n (nb). (4)

But, because Bessel’s equation (e.g., [9], section 9.1) gives

J ′′
n (nb) = 1

b2

[
b

n
J ′

n(nb) + (1 − b2)Jn(nb)

]
(5)

one has

b2 ∂S3

∂b
+ 2bS3 = (1 − b2)

∂S1

∂b
(6)

so that

S3 = 1

b2

[
(1 − b2)S1 + 2

∫ b

0
dx S1(x)

]
. (7)

Equally

S4 = 1

b2

[
(1 − b2)S2 + 2

∫ b

0
dx S2(x)

]
. (8)

Thus it is sufficient to obtain S1 and S2.
One can also use a version of a theorem due to Watson [10], which states that, if

g(b) =
∞∑

n=1

anJn(nb) (9)

is known, where an is arbitrary, then

f (b) =
∞∑

n=1

an

n2
Jn(nb) (10)

can be obtained from(
b

∂

∂b

)2

f (b) = (1 − b2)g(b). (11)

Alternatively, if f (b) is known then g(b) is given by direct differentiation.
Consider then S1. Use the fact that (e.g., [11], section 6.681)

J 2
n (nb) = 2

π

∫ π
2

0
dψJ2n(2nb cos ψ) (12)

3
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so that

S1 = 2

π

∫ π
2

0
dψ

∞∑
n=1

λnn2mJ2n(2nb cos ψ). (13)

But the series

hm(b) =
∞∑

n=1

λnn2mJ2n(2nb cos ψ) (14a)

≡ 1

22m

∞∑
n=1

λn(2n)2mJ2n(2nb cos ψ) (14b)

is precisely of the form required in Watson’s theorem, with an = 0 if n is odd and
an = exp[inπ/2 ln λ]n2m if n is even, so that

(1 − b2)hm(b) =
(

b
∂

∂b

)2

hm−2(b). (15)

Hence, for m > 0 all series of the type S1 can be reduced to the determination of h0(b)

by differentiation. This procedure was used by Lerche and Tautz [7] to evaluate in closed
form the two Kapteyn series of the second kind occurring in the dipole radiation problem
discussed by Harrison and Tademaru [6] who had obtained only the lowest order expansion
result. Equally, for m < 0 one can use Watson’s theorem in the converse sense to note that(

b
∂

∂b

)2

h−|m|(b) = (1 − b2)h−|m|+2(b) (16)

so that, by two integrations, one has a recursive relation leading directly to h0.
Thus, all 12 of the basic series needed can be written in terms of four fundamental series

F =
∞∑

n=1

λn

n
J 2

n (nb) (17a)

G =
∞∑

n=1

λnJ 2
n (nb) (17b)

for λ ∈ {±1}. All other series (with m �= 0, or m �= −1, respectively) are directly given
as simple differentials or simple integrals with respect to b of one or the other of the four
fundamental series. It is, therefore, both necessary and sufficient to consider F and G.

2.2. The two series represented by F

Set

F+ =
∞∑

n=1

J 2
n (nb)

n
(18a)

F− =
∞∑

n=1

(−1)n
J 2

n (nb)

n
. (18b)

Now, in F+, replace the Bessel functions as

J 2
n (nb) = 2

π

∫ π
2

0
dψJ2n(2nb cos ψ) (19)
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while in F− replace (−1)nJ 2
n (nb) = Jn(nb)J−n(nb) and

Jn(nb)J−n(nb) = 2

π

∫ π
2

0
dψJ0(2nb cos ψ) cos 2nψ. (20)

Then, write

J2n(2nb cos ψ) = 2

π

∫ π
2

0
dθ cos(2nb cos ψ sin θ) cos 2nθ (21)

and

J0(2nb cos ψ) = 2

π

∫ π
2

0
dθ cos(2nb cos ψ sin θ). (22)

In principle, one could also use a representation of the Bessel function in exponential
form (see [11]) and then carry out the summation. However, because equations (18a) and
(18b) are a product of two Bessel functions, this ansatz would be even more difficult than the
approach followed here.

Now, inserting equations (19) and (21) into expression (18a) for F+ and inserting equations
(20) and (22) into expression (18b) for F− and then performing directly the infinite sums leads,
after some tedious but elementary algebra, to

F+ = − 1

π2

∫ π
2

0
dφ

∫ π
2

0
dθ ln

[
sin2(θ − b cos φ sin θ) sin2(θ + b cos φ sin θ)

sin4 θ

]
(23a)

and

F− = − 1

π2

∫ π
2

0
dφ

∫ π
2

0
dθ ln

[
cos2(θ − b cos φ sin θ) cos2(θ + b cos φ sin θ)

cos4 θ

]
(23b)

= − 1

π2

∫ π
2

0
dφ

∫ π
2

0
dθ ln

[
sin2(θ − b cos φ cos θ) sin2(θ + b cos φ cos θ)

sin4 θ

]
. (23c)

Numerical investigation by direct summation of F+ and F− as given in equations (18a),
(18b) and comparison with the simple integral formulations given in equations (23a), (23c)
show that the series are indeed given by equations (23a), (23c) to better than a part in 104;
this limit on resolution being caused by numerical round-off error. Figures 1 and 2 show the
comparison between the integrals and direct summation as a function of increasing b ∈]0, 1[
for both F+ and F−, respectively, with the relative error (in %) also being plotted3.

Throughout the paper, the numerical evaluation of infinite sums is carried out as follows:
first, a number of terms (usually 1000) are summed directly; to accelerate the convergence of
the sum, then Wynn’s epsilon method (see, e.g., [12, 13]) is used, which samples a number of
additional terms (usually 100) in the sum, and then tries to fit them to a polynomial multiplied
by a decaying exponential. Thus, the series are well approximated and the required computer
time is kept moderate. The convergence of the sums, in addition, is guaranteed by analytical
considerations. Furthermore, numerical integrations are carried out using standard techniques
such as adaptive grids. However, some care has to be taken of the square-root singularity [e.g.,
at φ = θ = 0 in equations (23a) and (23c)]. Since we used Mathematica R© version 6.0, this

3 Note that, for numerical reasons, the relative error increases above 10−4% as b → 1 (figure 1) and as b → 0
(figure 2), respectively. This depends heavily on the numerical summation and integration methods as well as on the
computer times. By expansion of the integrals around b = 1 and b = 0, however, one can get almost exact agreement
of the series and the integral.

5
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Figure 1. The series F+ from equation (18a) with the relative error when compared to the integral
from equation (23a).
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Figure 2. The series F− from equation (18b) with the relative error when compared to the integral
from equation (23c).

problem is dealt with automatically. Using other packages, however, appropriate measures
would have to be taken manually.

Marshall [8] suggested that the sum FM ≡ 1
2∂F+/∂b, written in the form

FM =
∞∑

n=1

Jn(nb)J ′
n(nb), (24)

6
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Figure 3. The series FM from equation (24) (solid line) compared to the integral representation
GM from equation (25), as given in [8] (dashed line). In the lower panel, the relative error with
respect to the direct summation of the series is shown.

could be represented by a single elliptic integral [his equation (23)] as

GM = 1

πb

∫ ∞

1
du

(
u√

u2 − b2 sin2 u
− 1

)
. (25)

Figure 3 shows plots (as a function of b) of both the sum F+ and the elliptic integral
representation suggested in [8]. There is no agreement even at the crudest level of
approximation indicating that the elliptic integral is not appropriate.

2.3. The two series represented by G

Set

G+ =
∞∑

n=1

J 2
n (nb) (26a)

G− =
∞∑

n=1

(−1)nJ 2
n (nb). (26b)

The series G+ has been known in closed form since the time of Schott [5]. Use the
well-known fact [1] that

1

1 − b cos φ
= 1 + 2

∞∑
n=1

Jn(nb) cos[n(φ − b sin φ)]. (27)

Integrate equation (27) over 0 � φ � π , thereby obtaining
∞∑

n=1

Jn(nb)2 = 1

2

(
1√

1 − b2
− 1

)
(28)

which is just Schott’s [5] formula.

7
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Figure 4. The values for ψ� as a function of b (upper panel) and the series G− from equation (26b)
together with the relative error when compared to the integral from equation (32a) (middle and
lower panels).

The series G− is considerably more complicated to evaluate. Write

G− ≡
∞∑

n=1

Jn(nb)J−n(nb)

= 2

π

∫ π
2

0
dψ

∞∑
n=1

J0(2nb cos ψ) cos 2nψ. (29)

Now use the Schlömilch [14] formula

f (x) = 2

π

∫ π
2

0
dφF(x sin φ)

= 1

π

∫ π

0
duF(u) +

2

π

∫ π

0
duF(u)

∞∑
n=1

J0(nx) cos nu (30a)

and set F(u) = δ(u − w) (in 0 � w � π ) so that
∞∑

n=1

J0(nx) cos nw = 1

2
[πf (x) − 1]. (31)

With the identifications w = 2ψ and x = 2b cos ψ , equation (29) then yields

G− = −1

2
+

1

π

∫ ψ�

0

dψ√
b2 cos2 ψ − ψ2

(32a)

8
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where the upper integration limit is implicitly given by ψ� = b cos ψ� or b is given explicitly
by b = ψ� sec ψ�. One can then write

G− = −1

2
+

cos ψ�

π

∫ 1

0

dz√
cos2(ψ�z) − z2 cos2 ψ�

(32b)

which might be more amenable when numerical integration is required. Figure 4 compares G−
given by equation (32a) with direct term-by-term summation of the series in equation (26b),
showing that, to within about 1 part in 105, the two are identical in the interval 0 < b < 1 (cf
footnote 3). Note also that the integral representation of G− is convergent for all values of b,
including b > 1.

3. Discussion and conclusion

A general method has been presented for the evaluation of 12 Kapteyn series of the second
kind. Such series are important for the analytic description of radiation processes in various
astrophysical applications such as the radiation from off-centered dipoles in neutron stars.
Originally, the Kapteyn series described here arose when the attempt was made to describe
the radiation from a distribution of a finite number of discrete point charges, all moving at
uniform spacing at a constant speed in a circle.

Previously, most of the Kapteyn series have not been evaluated or, in the case of one of
the series, were written in terms of a single elliptic integral, which turned out to be invalid
when evaluated numerically (see equation (25)). Instead, a new equation (32a) was found,
which represents the series Gm in terms of a different, but also elliptic, integral.

As has been shown here by recurrence relations, there are only four basic series that need
to be calculated, one of which was already known in closed algebraic form. All other of the
12 series can be obtained from direct differentiation or integration of one or other of the four
basic series. The series can be evaluated in terms of closed analytic expressions or in terms of
integrals that cannot be further reduced. Numerical calculations were carried out to compare
the values obtained by direct summation to those obtained from the integral representations,
and the relative errors (less than a part in 104) were shown to be limited by numerical round-off
errors that are responsible for the differences occurring between direct series representations
and integral representations of the series.

Furthermore, the method presented here may be useful when one has other Kapteyn series
of the second kind to consider, thereby providing an additional reason to consider such series
anew.
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